Exercise 37

Solve the initial-value problem in Exercise 9.2.27 to find an expression for the charge at time t. Find the limiting value of the charge.

Solution

The initial-value problem in Exercise 9.2.27 is the following:

$$
R \frac{d Q}{d t}+\frac{1}{C} Q=E(t), \quad Q(0)=0
$$

where $R=5 \Omega, E(t)=60 \mathrm{~V}$, and $C=0.05 \mathrm{~F}$.

$$
\begin{aligned}
5 \frac{d Q}{d t}+20 Q & =60 \\
\frac{d Q}{d t}+4 Q & =12 \\
\frac{d Q}{d t} & =12-4 Q .
\end{aligned}
$$

This is a separable equation, so we can solve for $Q(t)$ by bringing all terms with Q to the left and all constants and terms with t to the right and then integrating both sides.

$$
\begin{aligned}
d Q & =4(3-Q) d t \\
\frac{d Q}{3-Q} & =4 d t \\
\int \frac{d Q}{3-Q} & =\int 4 d t
\end{aligned}
$$

Use a u-substitution to solve the integral on the left.

$$
\begin{aligned}
& \text { Let } u=3-Q \\
& d u=-d Q \quad \rightarrow \quad d Q=-d u \\
& \int \frac{-d u}{u}=\int 4 d t \\
& -\ln |u|=4 t+D \\
& \ln |3-Q|=-4 t-D \\
& e^{\ln |3-Q|}=e^{-4 t-D} \\
& |3-Q|=e^{-4 t} e^{-D} \\
& 3-Q= \pm e^{-D} e^{-4 t}
\end{aligned}
$$

Let $D_{1}= \pm e^{-D}$.

$$
Q(t)=3-D_{1} e^{-4 t}
$$

We can use the initial condition to determine D_{1}.

$$
\begin{aligned}
Q(0)=3-D_{1} & =0 \\
D_{1} & =3
\end{aligned}
$$

Therefore,

$$
Q(t)=3\left(1-e^{-4 t}\right) .
$$

The limiting value of the charge is found by taking the limit as t goes to infinity.

$$
\begin{aligned}
\lim _{t \rightarrow \infty} Q(t) & =\lim _{t \rightarrow \infty} 3\left(1-e^{-4 t}\right) \\
& =\lim _{t \rightarrow \infty} 3-\lim _{t \rightarrow \infty} 3 e^{-4 t} \\
& =\lim _{t \rightarrow \infty} 3-3 \underbrace{\lim _{t \rightarrow \infty} e^{-4 t}}_{=0} \\
& =3-3(0)
\end{aligned}
$$

Thus,

$$
\lim _{t \rightarrow \infty} Q(t)=3 \mathrm{C} .
$$

